
API Testing Micro-Credential

Syllabus

Copyright Notice
Copyright AT*SQA, All Rights Reserved

API Testing Micro-Credential Syllabus 2Copyright AT*SQA,
All Rights Reserved

Table of Contents
API Testing
5 Introduction
7 What Will You Learn
10 Fundamentals
14 Testing Techniques
17 Challenges

References
19 Trademarks
19 General References

API Testing Micro-Credential Syllabus 3Copyright AT*SQA,
All Rights Reserved

General Information
STUDY TIME – 190 MINS.

KEYWORDS
API, database, integrated connections, endpoints, API mock, Token, data
exchange, messaging, data connectivity, data transfer, request/response,

get, put, post, open API, composite API, partner API, internal API, JWT, token,
token authority, OWASP, Postman, GET, POST, PUT, request, response, data

validation, Developer Tools, error testing, test automation, data format, JSON,
XML, grey-box testing, Security tokens, server, tools, test maintenance

API Testing Micro-Credential Syllabus 4Copyright AT*SQA,
All Rights Reserved

LEARNING OBJECTIVES FOR API TESTING
Introduction

API Test Strategy & Planning
(K2) Explain the importance of test planning or strategy for API testing

The Software Tester’s Role
(K1) Recall the software tester’s typical role in API testing

Benefits - Why do API Testing?
(K1) Recall the benefits of API Testing and why it is needed

API Types & Functions
(K1) Recall the four API types and functions
(K2) Understand the different types and functions of an API

Definition of an Endpoint
(K1) Recall the definition of an API endpoint

Principles of Data Exchange & Messaging
(K2) Explain the concept of data exchange and messaging as it applies to an API

API Security
(K1) Recall the importance of API security using tokens

API Testing Micro-Credential Syllabus 5Copyright AT*SQA,
All Rights Reserved

Error Messaging
(K1) Recall the 5 error status codes levels
(K2) Explain the parts of the API response that indicates the status code

Functional Testing
(K1) Recall the definitions of GET, POST, and PUT
(K2) Understand how the response tests for data validation
(K3) Apply understanding to evaluating a test response within the response code
(K3) Apply understanding to evaluating a test response using Developer tools in a browser

Error Testing
(K1) Recall the importance of error testing to ensure all status codes are triggered

API Test Automation
(K1) Recall the existence of API test automation options available

Server Access & Security Tokens
(K2) Explain the need and purpose for server access to test API both for authentication and function-
al testing

Tools
(K1) Recall the availability of tool options for API testing

Test Maintenance
(K1) Recall the importance of test maintenance and its impact on API tests

API Testing Micro-Credential Syllabus 6Copyright AT*SQA,
All Rights Reserved

Introduction
The acronym API stands for Application Programming Interface. APIs are programming
interfaces that connect applications to each other, a database, or a messaging system.

API test development and execution is the most important grey-box functional testing a
tester performs if the application(s) shares data, messaging, and relies on the input and
output of various API endpoints. API testing is performed to ensure API endpoints and
data sharing functions work as expected. API testing ensures connecting data feeds
are sending the data expected as well as how, when, and where expected. API testing
guards against data corruption in transit or sudden failures in database or endpoint
connectivity. API testing ensures your application functions perform as intended for
applications designed for web or mobile environments.

Testing APIs is an essential skill for the modern-day software tester. Mobile and web
applications use data continuously and share it amongst applications making the
software tester role more complex. Testing the API connections for an application is a
critical skill in today’s professional software tester job market.

API Testing Micro-Credential Syllabus 7Copyright AT*SQA,
All Rights Reserved

What will you learn?
API Test Strategy & Planning
Start API testing efforts by developing an API test
strategy or test plan. The plan doesn’t have to be
a long, or formal document; it can be as simple as
a list. For example, for API testing the business
needs to determine and define the following:

• Who is developing the tests?
• Who is executing the tests?
• How often are the tests executed?
• Where are the tests being executed, or what

server is planned for testing?
• How are the tests created? For example,

determine if the business plans on using a tool,
developing a custom tool, or using browser Dev
Tools.

• Define an API test priority list for all API’s used
by the application(s) under test.

• Define the main types of testing performed
during API testing:

 • Access security
 • Endpoint security
 • Data security
 • Error Messaging
• Functional Testing using request/response

verification
• Get security access established for those who

develop and execute the tests, along with the
appropriate user rights.

• Train testers on how to access the APIs directly,
through tools, or through the application for
testing.

• Determine if the tester will be testing partner
APIs directly or by developing API mocks for
testing.

A testing strategy for APIs is necessary because
it helps to ensure the critical items needed for a
particular API testing effort have been considered.
There’s more to API Testing than knowing the
endpoint is functional. It’s complex, which is a
good reason to test as thoroughly as possible on a
regular basis.

API Testing Micro-Credential Syllabus 8Copyright AT*SQA,
All Rights Reserved

The Software Tester’s Role
API testing is another type of testing performed
by a person in the software tester role within the
development team or as part of an independent
test team. Frequently, the software tester works
with a developer to get the endpoint URLs or
other API documentation to enhance the quality
of the tests. Developers are an excellent reference
point for how the API works, what part of the
application functionality it impacts, as well as the
data passed or returned by the API. In addition, the
developer is often the provider of API access keys.
The software tester is tasked with finding defects
and failures in the API by testing the application
UI, and testing the actual API directly.

Benefits
Why execute API Testing?

The simple reason for performing API testing
is that without API’s most modern mobile and
web applications cannot function. APIs are the
bridge to functionality delivered by services and
microservices.

For example, if the application consumes or shares
data, messages outbound, or saves to a database,
API testing is needed.

One benefit of API testing is it provides test
coverage to ensure the application’s API’s are
communicating and saving as expected. A
common goal of API test coverage is to test each
API and each functional area of the application
impacted by the API.

API Testing Micro-Credential Syllabus 9Copyright AT*SQA,
All Rights Reserved

Another critical benefit of API testing is that it
provides a layer of security testing by testing the
authentication, authorization and encryption of
data. Messaging and data can be intercepted
or re-routed, which can result in a data breach.
Testing the security of API endpoints is essential
to stop unauthorized users from accessing
application data in transit.

Another benefit of API testing is the protection
against defects arising from unexpected code
changes made by connecting partners or database
code updates. Unfortunately, such unexpected
changes often occur and have their impact in the
production (live) environment. For this reason, API
testing may need to be conducted as a monitoring
activity for applications in live use.

Finally, the risk of the disruption of an application’s
functional workflow is reduced when API testing
occurs regularly on either a live or test server. API
testing ensures consistent functional performance
of the application for customers on the live server.

API Testing Micro-Credential Syllabus 10Copyright AT*SQA,
All Rights Reserved

Fundamentals
API Functional Types &
Protocols
There are several types of API’s used in software
development. Each has a specific use depending
on the function the API performs.

• Open – These are open source API’s accessible
by using a simple HTTP protocol. They are
public API’s that are not secured, so nearly
anyone can connect to their endpoints.

• Internal – These are for internal use only, and
not shared with partners or the public. Internal
APIs communicate and share data between
divisions or departments.

• Partner – These are typically owned and
secured APIs whose connection information
is controlled and allowed only with business
partners. Application development companies
interact with each other, and if allowed they
share APIs. An example of partner APIs is
healthcare record data exchange systems.
Data is exchanged using APIs across multiple
connected partner entities like a doctor’s office,
pharmacy, and healthcare network.

• Composite – These are a combination of data
and service functions in a single API. Services
allow access to multiple endpoints with a single
call. They are used when information needs to
be shared between resources without having to
develop and support multiple API instances.

API Testing Micro-Credential Syllabus 11Copyright AT*SQA,
All Rights Reserved

APIs have different protocols. Protocols are literally
the architectural style and format in which the API
is developed. The reason for establishing protocols
is having a shared set of defined rules for the use
of data types and commands. It is the protocol that
defines the formatting of data or information that
is exchanged by the API. It is possible to connect
one API to multiple protocol types, but doing so
increases the complexity of the API. The following
are the commonly used API protocols:

• REST - REST or RESTful API stands for
Representational State Transfer. REST
API’s function is based on a known set of
architectural rules that control communication
and data transfer.

• JSON – JSON (JavaScript Object Notation) is a
lightweight format for transferring and storying
data. JSON is self-describing and typically
easier to understand coding language. JSON is
frequently used with a REST/RESTful API.

• XML - XML stands for eXtensible Markup
Language. XML is designed to store and
transport data. XML was designed to be

both human- and machinereadable. XML is a
formatting code language that uses remote
procedure calls to perform data transfer.

• SOAP - SOAP stands for Simple Object Access
Protocol. SOAP is built using XML to perform
data transfer operations. SOAP has the ability
using XML to share data between applications
and components even if written in different
coding languages. In other words, it uses XML
to exchange information in a header/body
(envelope) format.

Definition of an Endpoint
The endpoint of an API is a connection point to a
digital location where requests are sent to retrieve
data. An endpoint requires a set of connection
data for access, and possibly a security token.
APIs typically require the following for an endpoint
to process a request: URL, method, header(s)
and body. The header contains the metadata
describing the request and the body contains the
message data.

API Testing Micro-Credential Syllabus 12Copyright AT*SQA,
All Rights Reserved

Endpoints are essentially server locations
or access points to a server between two
applications or services. Without endpoints, API’s
cannot communicate with each other.

Principles of Data Exchange
& Messaging
Data exchange systems and messaging are
related methods that use APIs. A data exchange
system is developed for a domain. Routines or
mapping is done to translate data in and out of the
domain. A group of data domains is an exchange
system.

Each domain is responsible for adhering to the
API protocol and type used. Then, the system
exchanges data through secured API endpoints.
The data exchange itself is the communication
between APIs using a protocol like JSON, or XML
as examples.

Messaging is the actual request sent to the API.
The “message” contains the endpoint, security
token (if used), metadata, and the body. The

metadata is a description of the contents of the
body, and the body contains the data itself in code
or other defined document type, such as PDF or
JPG.

API Security
APIs expose endpoints that handle object
identifiers, creating a wide attack surface to
steal data or intercept requests. Numerous
methods exist for securing API endpoints and
the servers connected to those endpoints. As
a software tester, become familiar with API
security so problems can be recognized during the
development cycle.

When API endpoints are not secured properly,
the risk of a data and system breach is high.
Most APIs use access tokens to authenticate user
interactions. However, testing access to the token
granting authority is secure and that the assets are
both stored and communicated securely is critical.
API security is a deep and substantial topic.

API Testing Micro-Credential Syllabus 13Copyright AT*SQA,
All Rights Reserved

In this syllabus, we’ll discuss the basics of token
authentication and JWT, verifying expiration dates,
and securing storage locations.

For more information on API security, or
application security in general, read the OWASP
site regularly or sign up for updates: https://owasp.
org/www-project-api-security/

Error Messaging
As Software Testers, we are interested in both
successful requests and those that produce an
error. It’s essential for testing API’s to test both the
response that is successful, and those that present
errors. When testing APIs, errors are returned
when a request fails instead of producing a correct
response. Typically, the error message returns a
description of the error, an error code, HTTP error
response message, and an HTTP error response
code.

An API error response includes the following:

• A textual error message
• Details of the error, if any
• General description of the error
• Error response code value
• HTTP response with HTTP response textual

message and an HTTP response code.

The following are response codes that APIs use
to communicate the status of a request with the
sender:

• 100 level - Informational - acknowledges the
request was received

• 200 level - Success - request received and
completed

• 300 level - Redirection - request is pending,
client action needed

• 400 level - Client error - request is invalid
• 500 level - Server error - internal server failure

consuming a request

As the API tester, create API tests to test for
each of these responses to the request. Some
exceptions may apply as 500 errors are generally
internal server errors requiring IT assistance
or IT intervention. The quality of the error text
description is relative to the developer of the API.

API Testing Micro-Credential Syllabus 14Copyright AT*SQA,
All Rights Reserved

Testing Techniques
Using Tools
In this micro-credential course, examples shown
are in the Postman tool. There are numerous tools
that provide API testing frameworks in addition to,
or instead of Postman.

Software testers will likely use a tool for API
testing. However, the tool used is typically chosen
by the development team or the business entity.
In this course, we are not covering how to use
a specific tool. Postman was chosen because
it has a free version that can be downloaded
and used to practice API testing. Postman also
offers an abundance of online tutorials and
reference resources for learning more about API
functionality.

Functional Testing
The majority of testing with APIs is functional
testing. A software tester performs some security
testing but the main or primary type of testing is
functional.

Functional testing ensures the API functions as
expected and generates the expected responses
with the expected data and format. API testing is
defined as a grey-box testing technique. It is grey
box because the tester have internal knowledge of
the API and application functions related to it.

3.2.1 GET, POST, PUT

GET, POST, PUT, and DELETE are common HTTP
(and HTTPS) methods used when testing APIs. In
this micro-credential we’ll cover GET, POST, and
PUT only as those are the ones software testers
primarily use.

API Testing Micro-Credential Syllabus 15Copyright AT*SQA,
All Rights Reserved

GET retrieves data from the API. In other words,
the request is “getting” data back in the response.
Similar to running a SQL query on the database,
with a GET request the data requested comes back
in the form of a response. The GET method is often
used to retrieve a security authentication token or
spot check data in the database.

POST sends new data to the API. The request is
“posting” data or adding data.

PUT updates existing data. PUT or PATCH do the
same function, they update the data value that
already exists in the database. Use PUT to update
existing database values.

3.2.2 REQUEST/RESPONSE

The request is the message created and sent to
the API endpoint. Within the request, designate
the data the tester is interested in adding,
retrieving, or editing based on the HTTP method
used (GET, POST, PUT). Once the request is sent,
the API responds with a textual response message
viewable in a variety of formats including JSON,
XML, and HTML. If a tool is used, the response is
typically shown in a “test results” area of the tool.

3.2.3 API DATA VALIDATION

Once a response message is received, test
or validate the data received based on the
parameters of the request. There are multiple ways
to validate the API data. The tester can use the
API response message and step through it line by
line. Or consider using the browser developer tools
option to view the API and data associated to it.

It is important to test for error conditions that
may not produce error messages from the API.
For example, data that may exceed the size of the
data expected by the other service or application
may be accepted, but later cause a system failure.
These types of defects are not uncommon with
APIs because input validation of the service or
application at the endpoint is often inadequate to
catch all forms of invalid input.

Likewise, applications that use APIs to receive
data should also have strong input validation edits
to prevent invalid or erroneous data from being
applied.

An example of input validation from an API would
be receiving a monetary conversion rate from a

API Testing Micro-Credential Syllabus 16Copyright AT*SQA,
All Rights Reserved

currency conversion web service. Just checking
for numeric input is not enough. A valid range of
input must also be specified and applied to prevent
greatly incorrect conversion rates for monetary
calculations.

Error Testing
When testing APIs, the response returns a status
code as discussed previously in section 2.5 of this
document. Also test, when possible, all the error
codes possible for the API or status codes 200 to
400. Status 500 is testable, but requires additional
IT involvement as it impacts the server the API
lives on.

Automating API Tests
Most tools offer a method to automate API tests.
Typically, a base set, or “canned” set of code
snippets are provided. Testers can enhance or
edit these code snippets to check for specific
data types or exact data matches returned in
the response message. Automated API tests add
depth and a repeatable test execution option that
is low maintenance.

API Testing Micro-Credential Syllabus 17Copyright AT*SQA,
All Rights Reserved

Challenges
Server Access & Security
Tokens
API test execution requires planning not only for
those actually executing the tests, but the IT team
in charge of the servers the APIs live on, and
accessing those servers. The tester will need their
expertise to determine when tests can be executed
without interfering with the server system when
testing in the live or production server. If testing
in a development or other non-production server,
then development assistance is usually required.
The tester also needs IT or Development help
to schedule error tests because sending bad
test data, without warning, is a bad idea. IT or
Development may need to monitor the APIs during
testing, in case a server-side failure occurs during
the test.

Testers don’t want to take down a non-test
server and all its connections. Additionally, when
testing on an internal server, with secured APIs,
the tester needs to request token access. Without
the security token access, tests cannot get past
the authentication functionality. Tokens change
constantly, so gaining access to the updated token
is a constant concern.

It is preferred to testing APIs initially on a non-
production environment. By testing on non-
production servers the risk to the production server
is significantly reduced.

API Testing Micro-Credential Syllabus 18Copyright AT*SQA,
All Rights Reserved

Tools
Tools are challenging to learn. Time for creating
practice API tests is essential for fully learning
the tool to create valid, and valuable API tests.
Testers need to keep in communication with
developers so they understand how an API works,
and gain access to API documentation. The API
documentation, written by developers contains
the API structure as well as endpoint and security
requirements. During test development, the tester
may notice gaps or missing information in the API
documentation. Check with the developer who
wrote the documentation to request updates.

Test Maintenance
API testing, like the majority of tests, requires
maintenance. Whenever the API code changes,
the tests need updated. The frequency of API
test maintenance depends on the frequency new
changes are made to your existing APIs.

API Testing Micro-Credential Syllabus 19Copyright AT*SQA,
All Rights Reserved

Trademarks
The following registered trademarks and service marks are used in this document.

AT*SQA® is a registered trademark of the Association for Testing and Software Quality Assurance Global
Certification Body, Inc

Postman® is a registered trademark of Postman

Purpose of this Document
This syllabus and body of knowledge form the AT*SQA micro-credential course for API Testing.

AT*SQA is an International Standards Organization (ISO) compliant certification body for software testers.
AT*SQA provides this syllabus as follows:

1. To training providers–to produce courseware and determine appropriate teaching methods.

2. To certification candidates–to prepare for the exam (as part of a training course or independently).

3. To the international software and systems engineering community–to advance the profession of software
and systems testing and as a basis for books and articles.

AT*SQA may allow other entities to use this syllabus for other purposes, provided they seek and obtain prior
written permission.

API Testing Micro-Credential Syllabus 20Copyright AT*SQA,
All Rights Reserved

References
https://www.ibm.com/cloud/learn/api

https://learning.postman.com/docs/getting-started/sending-the-first-request/

https://www.baeldung.com/rest-api-error-handling-best-practices

https://owasp.org/www-project-api-security/

https://smartbear.com/learn/performance-monitoring/apiendpoints/#:~:text=Simply%20put%2C%20an%20
endpoint%20is,of%20a%20server%20or%20service

https://www.freecodecamp.org/news/rest-api-best-practices-rest-endpointdesign-examples/

https://www.ibm.com/cloud/learn/api

www.atsqa.org

